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Figure 1. LEGO-H enables humanoids to hike complex trails independently. The center H1 robot autonomously adapts to terrain gaps,
using near-future navigation goals (b) to guide movement toward the trail end. Larger to smaller bubbles indicate navigation direction, with
colors showing future step progression (orange → green → forest). LEGO-H’s end-to-end framework integrates visual perception (a) and
body dynamics for seamless navigation and locomotion. Left figures show emergent motor skills (c) and path exploration over obstacles (d)
in a smaller G1 robot. Project page: LEGO-H-HumanoidRobotHiking.github.io.

Abstract

Hiking on complex trails demands balance, agility, and
adaptive decision-making over unpredictable terrain. Cur-
rent humanoid research remains fragmented and inadequate
for hiking: locomotion focuses on motor skills without long-
term goals or situational awareness, while semantic navi-
gation overlooks real-world embodiment and local terrain
variability. We propose training humanoids to hike on com-
plex trails, fostering integrative skill development across
visual perception, decision making, and motor execution.

We develop LEGO-H, a learning framework that enables
a humanoid with vision to hike complex trails independently.
It has two key innovations. 1) A Temporal Vision Trans-
former variant anticipates future steps to guide locomotion,
unifying local movement and goal-directed navigation. 2)
Latent representations of joint movement patterns combined

with hierarchical metric learning allow smooth policy trans-
fer from privileged training to onboard execution. These
techniques enable LEGO-H to handle diverse physical and
environmental challenges without relying on predefined mo-
tion patterns. Experiments on diverse simulated hiking trails
and humanoids with different morphologies demonstrate
LEGO-H’s robustness and versatility, establishing a strong
foundation for future humanoid development.

1. Introduction

Hiking [27, 29]challenges humans to master diverse motor
skills and adapt to complex, unpredictable terrains - such
as steep slopes, wide ditches, tangled roots, and abrupt el-
evation changes etc., – requiring constant balance, agility,
and decision-making. Hiking is thus an ideal testbed for de-
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Figure 2. Hiking requires locomotion versatility, perceptual
awareness, and body-aware planning - integrated for the first
time in our approach. Prior work considers only subsets of these
capabilities (hatched patterns), whereas LEGO-H unifies all three
within a single learning framework to enable embodied autonomy.

veloping humanoid autonomy and coordination between vi-
sion, decision-making, and motor execution. Hiking-capable
robots could explore remote areas, assist in rescue missions,
and guide individuals along rugged paths.

Hiking poses challenges beyond traditional goal naviga-
tion, blind locomotion, and single motor pattern learning.
To succeed, humanoid robots must excel in three key ar-
eas. 1) Locomotion versatility – The ability to handle mixed
terrains like dirt, rocks, stairs, and streams, adapting dynami-
cally with skills like jumping and leaping while maintaining
balance. 2) Perceptual awareness - The ability to sense
and respond to complex 3D environments, such as stepping
over logs or navigating around trees. 3) Body awareness –
The ability to adjust in real time to local obstacles, terrain
changes, and body states by coordinating vision and motor
control for adaptive foot placement and movement.

Current humanoids struggle to meet these demands due
to the lack of a unified framework that integrates low-level
motor skills with high-level navigation (Fig 2). 1) Locomo-
tion methods simplify terrain interactions to static patterns,
focusing narrowly on walking [32, 33] or mimicry [20, 30],
limiting real-world adaptability. Advanced frameworks for
complex skills like parkour [9] often rely heavily on user
commands or engineering. 2) Navigation methods struggle
with real-time adaptability, relying on scene mapping [28]
or rigid assumptions [26]. While LLMs/VLMs [44] have ad-
vanced, their lack of motor skill integration limits perceptual
awareness and last-step feasibility. Bridging motor skills
and navigation remains challenging due to asynchronous
and divergent responses required for complex environments.

We introduce LEGO-H, a perceptual-aware, end-to-end,
embodied learning framework that enables humanoid robots
to traverse complex trails using visual inputs (Fig 1). LEGO-
H fosters integrative navigation and locomotion skills by
refining the Hierarchical Reinforcement Learning (HRL)
paradigm and improving the privileged learning scheme.

To achieve perceptual awareness and embodiment at both
planning and motor skill levels, a structured framework is es-
sential to manage the interplay between navigation and loco-
motion. The HRL paradigm suits this purpose, but learning
multi-level policies within a single framework often compro-
mises one aspect (e.g.,[1] limits motor skills to walking, and
[11] oversimplifies the environment). Our first contribution
is reformulating high-level local navigation as a vision-
based sequential anticipation problem to guide locomotion
policy learning. We introduce TC-ViTs, a Temporal Vi-
sion Transformer variant tailored for HRL, combining vision
transformer’s tokenization with RL’s embodiment. Instead
of treating the navigation target as a static token, TC-ViTs
model 1) navigation goals and 2) temporal-spatial relations,
considering the robot’s past, present, and future states for
sequential anticipation. The locomotion policy network then
integrates these latent features, and partial anticipation, with
proprioceptive input to generate motor actions. This archi-
tecture ensures coordination between perception and motor
execution, essential for navigating complex dynamic trails.

A key challenge in robot learning is to develop diverse
and safe motor skills. Privileged learning offers a solution:
Assume the intermediate navigation targets are known for
the teacher policy to develop versatile motor skills, then
jointly train navigation and locomotion for the student policy
during distillation. It improves skill acquisition but compli-
cates action learning when integrating visual inputs, increas-
ing the risk of errors and damage from unexpected actions.
Our second contribution is a hierarchical loss metric set
that distills policy based on action rationality — maintain-
ing the structural relationships between joint movements.
Conventional privileged learning supervises overall data dis-
tribution [40] or per-joint errors [18], ignoring inter-joint
dependencies. We address this by using structured latent rep-
resentations and masked reconstruction through Variational
Autoencoders (VAEs) [16]. Masking during reconstruction
constrains joint dependencies, creating a task-agnostic hier-
archical loss set that improves policy learning across motor
tasks. Since the latent prior comes from the oracle policy,
not human motion data, the robot learns self-reliant motor
behaviors suited to its own structure.

We demonstrate LEGO-H’s robustness and versatility on
diverse simulated hiking trails using a low-cost humanoid,
Unitree H1 [43]. Ablation studies confirm the effectiveness
of our design, and LEGO-H generalizes well to other types
of humanoids such as Unitree G1. Contributions are sum-
marised as follows: 1) We propose hiking as a testbed for
integrative humanoid skill development. 2) We introduce
LEGO-H, a learning framework for independent humanoid
hiking. 3) Experiments on diverse simulated trails and hu-
manoids with different morphologies demonstrate LEGO-
H’s robustness and versatility, laying a strong foundation for
future humanoid development.



2. Related Work
Humanoid locomotion. Existing approaches to low-level
motor skill learning typically simplify environmental inter-
actions, abstracting terrains into static patterns at a momen-
tary scale, which neglects occlusions caused by obstacles
or dynamic environmental disruptions. Research in this do-
main has primarily focused on learning specific locomotion
skills such as walking [5, 13, 21, 32, 33], running [38, 39],
and soccer-playing behaviors [14]. These approaches of-
ten rely on highly engineered designs optimized for spe-
cific lower-body tasks. Other works employ imitation learn-
ing [20, 24, 30, 31, 41] to generate human-like behaviors
from large-scale motion datasets, but this comes at the cost
of reduced embodiment. Some frameworks attempt to push
the boundaries of robotic motor skills by exploring tasks
like parkour [9, 48], acrobatic flipping [7], or cliffside climb-
ing [47]. While impressive, these methods are often bogged
down by complex engineering, reliance on user commands
for motion planning, or lack of perceptual awareness.
Humanoid navigation. Research on this direction often
struggles to address real-time environmental constraints
while accounting for the unique mechanisms and actions of
humanoid robots. These limitations frequently lead to sub-
optimal navigation plans in complex terrains. Conventional
methods typically rely on scene mapping [8, 28] or struc-
tured world assumptions [26], which restrict adaptability
in dynamic and unstructured environments. Contact-aware
approaches [22, 23] attempt to bridge robot configurations
with environmental constraints, but they often depend on pre-
generated trajectories, limiting responsiveness. Similarly,
mapless methods [4] leverage visual inputs for navigation
but are typically constrained to basic locomotion capabilities
such as walking. Recent advancements in large language and
vision-language models have shown potential for complex
high-level planning [44], yet remain uncoupled from motor
control systems, failing to achieve autonomous perceptual
awareness and last-step feasibility required for navigating
diverse, fine-grained environments, like hiking.
Joint learning of navigation and locomotion. Integrating
navigation and locomotion into a unified framework remains
a significant challenge. In the realm of wheeled-legged
and quadruped robots, several studies [15, 19, 35, 45] have
explored paradigms that unify local navigation and loco-
motion. While these approaches provide valuable insights,
tailoring them to humanoid robots as a baseline for hiking
tasks reveals several critical gaps. First, humanoid robots
possess significantly more degrees of freedom (DoF) than
quadrupeds or wheeled-legged robots, complicating the de-
velopment of stable locomotion policies. Achieving balance
across diverse lower-body motor skills (e.g., walking, jump-
ing, and leaping etc.) within a single framework remains
an open problem. Second, the greater body height of hu-
manoid robots introduces challenges in visual perception,

expanding their field of view and capturing a broader range
of distances. This increased perceptual complexity exac-
erbates the misalignment between environmental sensing
and physical contact, further complicating decision-making,
navigation, and motor execution processes.

Refer to Appendix for discussion on HRL, and Privileged
Learning, which form foundational pillars of our approach.

3. LEGO-H Framework
Sec. 3.1 concretes the definition of hiking task. Sec. 3.2
provides a concise system overview of LEGO-H. Sec 3.3 -
3.6 unfold the details of LEGO-H’s learning process.

3.1. Task Definition
Drawing from human hiking paradigm [2], and considering
the payloads a humanoid robot can carry in the real world
(e.g., a front-mounted Depth camera, and a GPS antenna), we
formalize the definition of hiking task as follows: Traversing
a trail from a designed starting point PA to endpoint PB ,
with efficiency, safety, and all-level autonomy. The given
conditions for the humanoid robot to hike are: (1) relative
position distance Drb between endpoint B and humanoid
robot’s root at the moment based on GPS; (2) GPS-based
M relative distances {Drm}Mm=1 between mth intermediate
sparse waypoints along the trail and humanoid robot’s root;
Here, we set M = 1, designating a single waypoint at the
trail’s midpoint to account for potential forks in real-world
trails. (3) The onboard proprioception data Xpro from in-
ternal variables like joint velocities and positions, providing
feedback on robot’s physical state. (4) Vision sensor data
{Ck}Kk=1

1 from a depth camera that lies in the humanoid
robot’s eye region. For ideal hiking, whole-body control
would enable optimal balance and support in trail scenarios
where hands provide additional contact points to coordinate
with feet. However, as a baseline prototype for this new
task—and noting that many trails can still be traversed with
leg movement alone—this study simplifies the task by freez-
ing humanoid’s upper-body pose, focusing on lower-body
functionality.

3.2. LEGO-H System Overview
The Primary goal for hiking is to reach PB with safety.
From a framework perspective, the humanoid robot needs to
be designed with two key requisites: (1) to autonomously
assess and adapt its local path based on environmental con-
ditions spanning multiple time scales, as well as the mo-
tor skills executable at each moment; (2) to enable motor
skills that, while unrestricted to any pre-designed modes, but
execute reasonably to prevent damage, exhibiting flexible
adaptability to foster emerged behaviors that optimally meet
dynamic environmental demands.

1k is the index of kth depth frame.



(b) Unified Hiking Policy Learning with Vision

(a) Oracle Policy Learning for Motor Skills
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Figure 3. LEGO-H Framework Overview. LEGO-H equips hu-
manoid robots with adaptive hiking skills by integrating navigation
H and locomotion E in a unified, end-to-end learning framework
(b). To foster the versatility of motor skills, we train the unified
policy via privileged learning from oracle policy (a).

To this end, we present LEGO-H, as outlined in Fig 3. The
robot employs two levels of modules (i.e., navigation mod-
ule H and motor skill module E) within a unified pipeline
(Fig 3(b)) to fulfill the first requisite. Specifically, given the
state sreal – depth sensor data {Ck}Kk=1, proprioception date
Xpro, endpoint information PB , and one middle waypoint
M , our navigation module H, implemented as TC-ViTs
(Sec 3.3), generates the implicit latent representation zuni of
the surrounding trail, and anticipates N future local naviga-
tion goals G = {gn}Nn=1

2 as well as the residual δg0 , which
captures the difference between the last step’s anticipated
goal and the actual result after execution. The latent zuni,
proprioception Xpro, residual δg0 , and only the local goal
g1 that is nearest to the robot, flow to the low-level motor
skill module E to softly guide the emergence of current ex-
ecutable actions at towards the trail’s endpoint, rather than
enforcing rigid alignment with H’s sequential local goal
anticipation. This unified pipeline enables the robot to au-
tonomously select, adapt, and navigate local paths within
traversable regions, avoiding entrapment in challenging trail
sections, and collisions with obstacles through visual percep-
tion and physical feedback.

2In practice, gn ∈ [0, 2π], indicating the goal direction, is represented as
yaw angle, and measured from the robot’s root.

To address the second requisite, we tailor the privi-
leged learning scheme. Concretely, before training the
unified pipeline, we first train an oracle motor skill policy
πtea(a|ssim) with privileged information Xpri (e.g., terrain
type, ground friction, and precise state measurements that
are unavailable for unified pipeline stage) and expert naviga-
tion goals as oracle inputs (Fig 3(a)). Although this teacher
stage operates without vision, Xpri and scandots (which rep-
resent scanned heights around the robot’s feet) provide clear
and precise data to facilitate high-performance motion skill
learning. Then, in the unified pipeline training, the teacher
policy is distilled into E using a Hierarchical Loss Metric
Set (Sec. 3.6) to ensure both diversity and robustness in final
motor skills from the policy πuni(a|sreal). This extended
regulation for privileged learning scheme ensures robots’
stable and efficient movements with adaptive locomotion
skills across diverse trail terrains.

3.3. TC-ViTs for Local Navigation Anticipation

Within LEGO-H, TC-ViTs (Temporal Information Condi-
tioned Vision Transformer Variants) serves as central mech-
anism to achieve unified policy learning with visual per-
ception, by addressing three critical questions to navigation
module: (1) how to cognize the past,current and future states
of the environment to balance both short-term reactivity with
long-term goal alignment? (2) How to predict the future that
remains adaptable to dynamic changes of environment and
motor actuation? and (3) how to achieve seamless interplay
between navigation and motor actuation, given their func-
tional differences in time scale within real-world hardware
settings? Fig 4 shows a detailed illustration of TC-ViTs.
Cognize surroundings with final goal. An intuitive ap-
proach to perceiving the surrounding environment would
assue Markovian observations and parse depth images be-
tween adjacent frames via methods like explicit 3D model-
ing [19]/reconstruction [46], temporal visual feature extrac-
tor [6], or secondary task like semantic-aware traversable
region prediction [10]. However, two critical issues arise
when applying these approaches to hiking. First, the time
scale challenge: both short-term dynamics and long-term
environmental dependencies must be considered simultane-
ously. Second, the specificity requirement: perceived visual
information should directly support the execution of the im-
mediate next step while ensuring alignment with final goal.

A straightforward solution is to leverage a temporal vi-
sion transformer with goal-oriented conditioning. Thus, the
first part of TC-ViTs (Fig 4 (a)) absorbs the encoder of a
classic temporal vision transformer, ViViT [3], to capture the
information with both spatial and long-range dependencies
via extracting spatio-temporal tokens from the input depth
sequences (16 frames, and downsample to 4), and process-
ing them through 6 transformer layers. Each layer contains
multi-headed self-attention in both spatial and temporal di-



mensions, with spatial attention applied first, followed by
temporal attention. To ensure a continuous, tight association
between each pixel (spatial and temporal ones) and the fi-
nal target, we unfold the goal information PB as an image
channel by tiling it to the size of (1, H,W )3, carpeting to-
gether with spatial and temporal features via tokenization. A
flattened feature vector α({Ck}Kk=1, PB) is obtained from
the final layer of the encoder. Compared to simply treating
the transformer as a depth sequence extractor and feeding
PB directly to the later module, this design ensures that the
goal information is embedded alongside spatial and tempo-
ral features through tokenization, maintaining a cohesive
alignment with the target throughout the navigation process.
Anticipate the near future. However, the above design
might be well-suited for embodied-agnostic, long-horizon
navigation task [37] that make decisions at coarse level,
but are not sufficient for humanoid hiking, which demands
multiple granularity decisions. As shown in Fig 1, hiking
scenarios often encompass complex, uneven terrains, and
sudden obstacles, where rapid adjustments are necessary, re-
lying solely on temporal transformers for spatial and tempo-
ral understanding dilute the immediate spatial detail needed
for precise foot placement and reactive balance adjustments.
Thus, integrating spatially precise information that directly
reflects the current state is essential. To this end, the sec-
ond part of TC-ViTs (Fig 4(b)) provides dual processing on
the current depth image. Specifically, each current depth is
processed independently through a shallow CNN, yielding
high-resolution spatial features β(Ck=t) that retain critical,
near-field spatial information. Since this branch is focused
on immediate dynamics, goal conditioning is not applied
here to master.

This dual-processing setup preserves fine-grained spatial
details needed for near-term navigation, while goal con-
ditioning temporal transformer manages broader patterns
across time scales. The outputs of both are concatenated
and passed through MLPs to complete each other, where
γ = MLPs(concat(α,β)). While, beyond capturing the dy-
namics of surrounding environment, it’s essential to account
for how motor actuation and physical body states influ-
ence decision-making. Thus, in the third part of TC-ViTs
(Fig 4(c)), we implement a recurrent goal adaptation mecha-
nism that integrates visual awareness, goal information, and
proprioception. This allows TC-ViTs to learn a latent repre-
sentation that encodes the world with both visual perception
and embodiment, as well as anticipated navigation goals and
current goal residual between execution and the last step
prediction. These serve as soft guidance for the locomotion
module. Concretely, the input to this component includes vi-
sual representation γ, endpoint PB , a middle waypoint Drm,
and proprioception Xpro. These inputs flow into two-layer

3In practice, we set H and W to 128. We patchify both image and frame
with size 16× 16.
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Figure 4. Architecture of TC-ViTs. Three key components: (a) a
goal-orientated temporal transformer encoder for robots cognizing
surroundings with the final goal; (2) a dual process on the current
depth frame for integrating spatially precise information to reflect
the current state (c) a recurrent goal adaptation mechanism that
integrates visual awareness, goal information, and proprioception.

MLPs, and following with a GRU to model sequential depen-
dencies between past, present, and anticipated future states:
zuni, δg0 , G = GRU(MLPs(γ, PB ,Drm,Xpro)). This struc-
ture enables TC-ViTs to capture visual cues with propriocep-
tive insights, ensuring the navigation goal suggestion is both
perceptive and responsive to the robot’s physical capabilities
(as shown in Fig. 5).
Seamless interplay between the two levels. Still and all,
due to hardware limitations in real robots, navigation and lo-
comotion modules operate distinct time scales. Take Unitree
H1 as an example, RealSense D435i depth sensor in the real
world functions at 10± 2Hz to capture depth sequences, and
the policy’s computation frequency is set at 50 Hz on Jetson
NX. This disparity introduces a gap in synchronism, where
visual information and navigation decisions can lag behind
the motor actuation. We use two strategies in TC-ViTs to
tackle the issues: (1) Nearest Goal Forwarding. For the
anticipated goals, we only forward the local goal g1 that is
nearest to the robot to the locomotion module. This prevents
long-term error accumulation in navigation decisions and al-
lows for timely adjustments to account for dynamic changes
and motor execution, as demonstrated in the Appendix. (2)
Latent State Tiling. zuni is tiled five times before flowing to
locomotion module. This tiling ensures continuous message
broadcasting and a stable connection between navigation and
locomotion processes. Together, these two strategies allow
for seamless interplay between the two levels, ensuring the
two modules work in harmony across time scales.

3.4. Oracle Policy Learning for Motor Skills
With TC-ViTs, local navigation and locomotion could be
bridged in a unified manner. While, before training the uni-
fied policy pipeline, we first leverage privileged information
to learn an Oracle policy for locomotion (Fig 3(a)), to ensure
the diversity of motor skills. Concretely, Xpro, current nav-
igation goal, the latent ztea of the scandots S ∈ R66×2

and Xpri, are input to the oracle policy. To encourage
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Figure 5. Dynamic adjustments of near goal predictions. Snap-
shots from left to right show a robot traversing mixed terrains
along a trail. TC-ViTs does not provide a fixed trajectory that the
locomotion module must rigidly follow. Instead, it predicts sev-
eral near-future goals (g1, g2, g3), which dynamically adapt to the
robot’s current state, reflecting real-time adjustments to its naviga-
tion decisions. Bubble size represents the predicted local navigation
direction (from large to small).

self-emergent motor behavior rather than pre-defined motor
modes, and promote upright locomotion, rewards on three as-
pects are essential in this stage: velocity tracking alignment
wrt waypoint direction rtracking, soft torso height range con-
strain rbase_height, and accumulation on feet air time rair_time.
Due to space limits, please refer to Appendix for details.

3.5. Unified Hiking Policy Learning with Vision
Once oracle policy πtea(a|ssim) is learned, we proceed to
distill it into student stage, simultaneously learning naviga-
tion and motor skills from visual observations via LEGO-H.
Specifically, as shown in Fig 3(b), LEGO-H first processes
depth sequences to generate latent zuni and anticipates near-
future navigation goals via TC-ViTs. Then, zuni, δg0 , g1
flow to locomotion module to obtain πuni(a|sreal) that pre-
dict at. Both π implemented as MLPs, and basic training
losses for the unified pipeline are reconstructions for imita-
tion in goal, latent, and action levels from teacher stage:

Lim = w1∥ztea − zuni∥2 + w2 SmoothL1(Gtea,Guni)

+ w3 SmoothL1(atea,auni) (1)

3.6. Hierarchical Loss Metric Set
To mitigate challenges introduced by modality and repre-
sentation disparities between teacher and student stages, the
constraints on students’ action space are essential during
policy distillation. We bound the student’s action space from
the structural rationality aspect, with loss metrics that reflect
the structural similarity between teacher and student actions
at each execution. Specifically, we employ a Variational
Autoencoder with masking to implicitly learn hierarchical
relationships in the teacher’s action space. This enables stu-
dent policy to internalize structured dependencies among
joints, fostering rational and coordinated actions.

Hierarchical action structure prior learning. Concretely,
during distillation, the VAE is iteratively trained on teacher
actions with randomly masked portions, requiring it to re-
construct the full action vector from partial inputs, where:

Lrec = w4LKL + w5Lself + w6Lmask (2)

LKL = KL (q(zvae|atea) ∥ N (0, I)) (3)

Lself = SmoothL1(Dec(Enc(atea)),atea) (4)

Lmask = SmoothL1(Dec(Enc(atmask)),atea) (5)

The wx are the scaling weights, zvae is the latent space of the
autoencoder, atmask is the masked teacher action with ran-
domly selected masking portion, and the Kullback-Leibler
term KL follows the VAE formulation [16]. As the joint ac-
tions are unordered, we add positional embedding with sine
and cosine functions to each joint. Upon the compactness
of latent space driven by the underlying normal distribution,
the masking further encourages the latent space of the VAE
to learn inter-joint dependencies and structural consisten-
cies that align closely with the robot’s physical mechanism,
rather than motion prior from human data.
Hierarchical action prior penalizer. Once trained, the VAE
encoder is used to measure alignment between teacher and
student actions in structured feature space. For each student
action vector auni, we compute hierarchical consistency loss
Lts relative to the corresponding teacher action:

Lts = 1− cos_sim(Enc(atea),Enc(auni)) (6)

= 1− Enc(atea) · Enc(auni)
∥Enc(atea)∥∥Enc(auni)∥

(7)

To further enhance hierarchy, we introduce the triplet dis-
tance with masking:

Ltrip = cmt(1− cos_sim(Enc(atea),Enc(aumask))) (8)
+cms(1− cos_sim(Enc(auni),Enc(aumask))) (9)

where aumask is a randomly masked student action, and cmt

and cms are scaling factors for the triplet distance terms.
Together, the hierarchical loss metric set is:

Lhie = w7Lts + w8Ltrip (10)

See Appendix for hyperparameters. As shown in Tab 1,
student robots trained without these losses display task-
completing motor behaviors that risk mechanical integrity
due to frequent collisions. In contrast, with hierarchical
losses, robots exhibit more refined, collision-free movements
that align better with internal structural consistency.



4. Experiments

We evaluate the effectiveness of LEGO-H across several
dimensions. First, we conduct ablations (Sec 4.2) to assess
individual components. Then, we analyze robot’s emerged
behaviors across different levels (Sec 4.3). Finally, as a new
task, we benchmark humanoid hiking in diverse simulated
trail environments, covering LEGO-H, and other representa-
tive methodologies tailored to this task (Sec 4.4). We detail
experimental setup on robot configurations/models/evalua-
tion metrics (Sec 4.1). Refer to Appendix for more details.

4.1. Experimental Settings

Robots. We use Unitree H1 [43] and G1 [42] humanoids,
chosen for their distinct differences in body scale and mecha-
nism: H1, at adult size (5.9 ft/47kg), contrasts with kid-sized
G1 (4.26 ft/35kg), with notable variations in torque density
and morphology. These inherent differences impact key
factors like visual perception range/motor stability/overall
movement complexity even within identical trails.
Implementations. Proprioception (Xpro ∈ R40): covers
lower-body joint positions, velocities, torso roll and pitch,
foot contact indicators, and previous action at−1 for both
robots. Actions (at ∈ R10): the learned policy uses position
control for joints, with positions converted to torque via a PD
controller τ = Kp(q̂ − q) +Kd( ˙̂q − q̇) with fixed gains (Kp

and Kd follow default configuration of Unitree). Training:
for both oracle and unified policy training, we use PPO [36],
supported by Dagger [34] and Actor-Critic [17] for privi-
leged learning. Rewards follow those introduced in method
section, with additional basic elements from [6, 12]. All
physics simulations perform in Isaac Gym simulator [25].
Metrics. We evaluate models based on three core criteria
with levels of granularity: goal completeness, safeness, and
efficiency. Concretely, we use 6 evaluation metrics – (1)
Goal Completeness: Success Rate (%) measuring the per-
centage of episodes where robots reach the hiking endpoint;
Trail Completion (%) indicating the portion of the trail route
a robot passed; and Traverse Rate (%) reflecting the distance
from robot’s final position (if not complete goal) to endpoint
relative to total trail length. (2) Safeness: MEV (%) as-
sessing foot-edge collisions; and TTF (seconds) evaluating
robot stability based on episode duration before a fall occurs.
(3) Efficiency: Time-to-Reach (seconds) measuring average
time required for successful episodes to reach endpoint. Un-
less specified, experiments are conducted with 512 randomly
spawned robots over 30 seconds on 5 distinct trail types,
each featuring 5 difficulty levels. Results are averaged over
5 runs to minimize random biases and verify robustness.

4.2. Ablation Study

Settings. We compare full LEGO-H with following de-
signs: (1)Oracle: trained with access to privileged info

Table 1. Ablation study of LEGO-H’s main Components on H1
robot. for best goal completeness; for most safeness; for
best efficiency. Refer to Appendix for more ablations.

Metrics Oracle LEGO-H w TC-ViTs Vanilla

Success Rate (SR) (%) ↑ 71.20± 0.72 68.40± 1.34 64.73± 2.22 42.97± 0.67
Trail Completion (TC) (%) ↑ 77.73± 0.92 52.78± 1.30 52.50± 1.52 32.01± 0.61

Traverse Rate (TR) (%) ↑ 73.60± 0.81 71.96± 2.37 72.04± 0.98 60.26± 0.94
MEV (%) ↓ 7.12± 0.92 7.84± 0.92 10.40± 1.50 9.41± 1.27
TTF (s) ↑ 7.25± 0.09 7.46± 0.17 7.00± 0.20 5.36± 0.10
T2R (s) ↓ 4.59± 0.08 4.95± 0.12 5.13± 0.12 6.50± 0.07

and expert-designed navigation goals, representing an upper-
bound performance.(2) w TC-ViTs: LEGO-H trained without
Hierarchical Loss Metric set (HLM). (3)Vanilla: LEGO-H
variant where TC-ViTs is replaced by a ConvGRU to predict
latent and goal, altering the navigation mechanism. We draw
key observations here. Refer to Appendix for more detailed
comparisons and analysis.
Results. Tab 1 indicates several insights. (1) TC-ViTs is es-
sential for basic hiking functionality. The consistent, signifi-
cant performance advantage of w TC-ViTs over Vanilla across
all metrics, except MEV, reveals the essence of balancing
the goal, physical state, and visual perception, which is cru-
cial for coordination between navigation and locomotion.(2)
Structural action behavior helps more efficient goal accom-
plishment and better stability. The absence of HLM (w
TC-ViTs) results in behaviors that complete tasks but com-
promise stability, often leading to mechanical risks (worse
MEV than others). Including HLM (LEGO-H) ensures coor-
dinated joint actions that align with the robot’s physical struc-
ture, promoting both task success (SR rises from 64.73% to
68.40%) and mechanical integrity (MEV goes from 10.40%
to 7.84%, TTF increase to 7.46s), leading to more efficient
task accomplishment (T2R improves from 5.13s to 4.95s).
(3) LEGO-H rivals oracle in efficiency and safety. Com-
pared to oracle which has perfect observation conditions and
expert navigation goals, LEGO-H falls behind on success
rate and trail completion. But surprising aspects are the ef-
ficiency and safeness, where LEGO-H’s performances are
comparable to or slightly better than oracle. This stresses
again LEGO-H’s effectiveness and capacity.

4.3. Emerged Behaviors in Different Situations
We further explore the behaviors that emerge in humanoid
robots to unfold how robots autonomously adapt their motor
skills and decision-making in response to various factors.
Locomotion in diverse trail terrains. As shown in Fig 6,
different terrain types trigger distinct locomotion behaviors,
like walking, stepping, jumping, leaping, and leaning side-
ways. Key observations include: (1) H1 robots typically
opt for a walking gait on continuous surfaces, regardless of
variations in friction, adjusting their body tilt as needed to
maintain balance (Fig 6 (a)). (2) Irregular surfaces, like frac-
tured or sloped terrains, prompt gaits like stepping, jumping,
or leaping, depending on slope and gap size (Fig 6 (b)). (3)
In tight spaces, such as cracks between large obstacles, H1’s
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Walk LeanStep Jump Leap

Figure 6. Locomotion in diverse trail terrains. Robots developed
distinct motor skills to tackle different terrains, e.g., walking on
rough surfaces/leaping across ditches/leaning away high obstacles.

Detour around Obstacle
Skip Obstacle

Figure 7. Navigation in diverse situations. Robots developed
different navigation skills to tackle different situations, such as
directly skipping a small obstacle and detouring around a high
obstacle to edge through.

Walk Down Leap Down

Figure 8. Motor behavior differences between robots. Robots
with different structures developed unique skills – H1, which is
higher and heavier, chooses to “walk down” step, while G1, which
is shorter and more lightweight, chooses to “leap down” the step.

adapt by leaning sideways to navigate through these confined
areas (Lean in Fig 6 (b)).
Navigation in blocked paths. Two key behaviors are evi-
dent from Fig 7: (1) When faced with tall or large obstacles,
the robots typically choose to detour, maintaining a safe
clearance from the obstacles. (2) For obstacles below hip
height, the robots initially attempt to stride or step over; if
unsuccessful, they then choose to detour. These phenomena
reveal the embodied character in high-level decisions. Refer
to the Appendix for more evaluations.
Motor behavior differences between robots. As shown in
Fig 8, when encountering identical trails like transitions be-
tween platform and flat ground, H1 and G1 exhibit different
behaviors. H1 navigates down smoothly, while G1 bends its
knees to jump down. This difference highlights the impact
of physical mechanisms on emergent motor styles.

4.4. Humanoid Hiking Benchmark
Settings. Since current research does not directly support
humanoid hiking, we selected two representative quadruped
pipelines, adapting them to this task using the same input
structure and oracle policy as LEGO-H. This setup allows us

to investigate several key factors essential for effective hu-
manoid hiking. The first adapted pipeline, EP-H, represents
a modified humanoid-hiking version of EP [6]. The main
methodological difference between EP-H and LEGO-H is
that EP-H handles visual-aware navigation and locomotion
by processing each depth frame independently, disregarding
farther depth data to avoid distributional shifts. RMA-H and
RMA-B are the adapted pipeline from RMA [18] – the for-
mer has vision inputs, and the later is blind. This pipeline
originally supports blind locomotion, and employs a frozen
oracle policy with an adapter network to map real-world
sensory data to the oracle’s latent space for policy adaptation.
Results. We focus on three vital questions from the bench-
mark: 1) Is visual perception essential for integrated navi-
gation and locomotion? 2) What type of visual information
is most effective? 3) Is unified cross-level learning neces-
sary? Key findings in Tab 2 and visualizations in Appendix
revel the answers:(1) Vision is essential. Without vision,
RMA-B struggles across all metrics, highlighting the need
for visual feedback. (2) Goal-aligned, multi-scale visual
perception is critical. EP-H, which processes each depth
frame independently without continuous goal alignment, and
brute-force cutoff distance information, results in frequent
circles and fails to lock onto navigation paths. The per-
formance gap between LEGO-H and EP-H across metrics
underscores the importance of structured visual information.
(3) Unified learning is vital for adaptability. RMA-H per-
forms adequately on straight paths but fails with turns or
obstacles, showing that locomotion feedback alone is in-
sufficient for embodied-aware decision-making. A unified
learning framework supports essential cross-level interaction,
enabling adaption and effectiveness across all levels.

Table 2. Hiking benchmark for Humanoid Robot H1 across all
different trail categories. for best goal completeness; for
most safeness; for best efficiency.

Metrics LEGO-H EP-H RMA-H RMA-B

Success Rate (%) ↑ 68.40± 1.34 28.80± 0.88 65.17± 2.05 48.11± 0.72
Trail Completion (%) ↑ 52.78± 1.30 25.98± 0.22 52.51± 1.41 41.92± 0.34

Traverse Rate (%) ↑ 71.96± 2.37 64.16± 0.48 74.61± 0.93 69.85± 1.50
MEV (%) ↓ 7.84± 0.92 12.44± 1.32 8.70± 1.55 10.74± 1.13
TTF (s) ↑ 7.46± 0.17 4.64± 0.13 6.97± 0.17 5.22± 0.03

Time-to-Reach (s) ↓ 4.95± 0.12 9.79± 0.16 4.98± 0.11 6.19± 0.05

5. Conclusion
LEGO-H stresses the importance of integrative multi-level
development in advancing humanoid robot autonomous ca-
pabilities for complex tasks like hiking. It unifies locomo-
tion and navigation within an end-to-end policy framework,
achieved by: (1) a Temporal Vision Transformer variant in
HRL, re-framing navigation as a sequential anticipation to
softly guide rather than rigidly enforce locomotion; (2) a
hierarchical metric set leveraging robot’s inherent structure
for task-agnostic supervision to policy distillation.
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Abstract

In the appendix, we provide a comprehensive elaboration of
LEGO-H. Section 1 recaps the positioning of the Humanoid
Hiking task and highlights how LEGO-H departs from the
current trends in humanoid robotics. Section 2 expands on
related work. Section 3 delves into extended ablation stud-
ies, analyzing detailed design choices of each component in
LEGO-H. Section 4 explores the framework’s universality
through experiments on the integration of LEGO-H compo-
nents into alternative frameworks. Section 5 introduces the
simulated environments developed for training and evalua-
tion in this new hiking paradigm. Section 6 specifies imple-
mentation details. Section 7 extends evaluations on critical
questions in humanoid hiking. Lastly, section 8 discusses
future work.
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Figure 1. The conceptual framework differences. We summa-
rize the key conceptual level differences between our work and
current humanoid robot trends for better positioning of LEGO-H.

1. The Positioning of LEGO-H

To better understand LEGO-H’s positioning, we present a
conceptual framework comparison in Fig 1. LEGO-H ad-
vances humanoid robotics by seamlessly integrating navi-
gation and locomotion into a unified policy learning frame-
work (Fig 1(c)). This contrasts with existing pipelines,
which either separate these modules (Fig 1(a)) or reduce en-
vironmental complexity by relying on external commands
for action execution (Fig 1(b)).

This work emphasizes the importance of integrative
development of navigation and locomotion for humanoid
robots to operate effectively in complex real-world environ-
ments. Humanoid hiking provides an ideal testbed to eval-
uate this coordination. LEGO-H, as a baseline prototype,
demonstrates how unified learning fosters self-emerged be-
haviors, enabling dynamic adaptation to diverse trails and
challenges.

2. Additional Related Work

2.1. Hierarchical RL
It is widely adopted to decompose a complex RL prob-
lem into multiple layers of policies [4, 13]. This paradigm
naturally structures in hierarchy, where a decision-
making/control module at higher levels manages temporal
(longer time scale) and behavioral abstraction, while a low-
level module focuses on atomic skills to execute momen-
tary actions in the environment, guided by the high-level
module. HRL includes two main methodologies: (1) ex-
plicit goal setting [9], where the high-level policy assigns
target goals to the low level, enhancing reusability but lim-
iting adaptability, and (2) latent space policies [7], where
high-level module guides the low-level policy by provid-
ing latent sub-goals at a lower frequency, offering flexibil-

ity but often limiting generalization. However, HRL are
generally not end-to-end trainable due to complexity and
distinct objectives of each level. Our LEGO-H, is also hi-
erarchical but avoids strict goal adherence or explicit skill
definitions. Instead, it presents a unified, end-to-end policy
learning framework, where high-level module offers latent
representations and intermediate goals as flexible guidance,
allowing low level to reference them adaptively rather than
following rigidly. This soft guidance supports adaptability
and coherence in complex environments, addressing tradi-
tional HRL limitations.

2.2. Privileged Learning
It is a two-stage technique in robotics, often employed
to address sim-to-real transfer challenges [2, 6, 15]. For
first teacher stage, the robot agent learns an oracle policy
via additionally accessing privileged information from hu-
man demonstrations [2], or GT exteroceptive measurements
from simulator [6]. Since extra information reduces ambi-
guity via precise physical states/terrain details/expert trajec-
tories, the agent could learn more precise actions. However,
as this information is unavailable in real-world deployment,
in the second student stage, the robot agent learns to imitate
the teacher’s behavior using only accessible data 1 through
knowledge distillation. Common distillation losses target
element-wise difference [2], distribution alignment [11] or
latent space alignment [5]. However, studies rarely address
the structural consistency of actions, a critical factor for hu-
manoid hiking, where the robot’s high articulation requires
precise coordination across joints.

3. Additional Ablation Studies
In this section, we delve into the detailed designs of
TC-ViTs (Sec. 3.1) and the Hierarchical Loss Metric Set
(Sec. 3.2). Additionally, we example and analyze fur-
ther emergent behaviors focusing on the safeness aspect
(Sec. 3.3), which were not covered in the main paper due
to space limits.

3.1. Efficiency of TC-ViTs
In this subsection, we further analyze the efficiency behind
TC-ViTs’ recurrent goal adaptation module design.
Why Recurrent Goal Adaptation? As mentioned in the
main paper, this module, implemented via a GRU and
grafted at the end of TC-ViTs – integrates motor actua-
tion and physical body states, enhancing visual cue pro-
cessing with proprioceptive insight. While recent advances
like CausalTransformers (CTs) [12, 17] have shown promis-
ing results in temporal modeling, we intentionally adopt
a GRU-based design due to its better computational effi-
ciency: TC-ViTs has Flops-0.686G/Params-31.25M , while

1It often includes proprioception, user commands, and visual sensor
inputs.



replacing its GRU to CTs increase to 0.785G/55.92M .
Besides, CTs require significantly more computational re-
sources for sufficient training, leading to performance
degradation under the same memory constraints (Tab. 1).
Since most visual information is already processed by the
preceding ViViT-style encoder, CTs would introduce redun-
dancy in such a later stage. An additional finding is that our
HLM helps improve CTs performance—e.g., reducing CT’s
collision (MEV) from 10.48% to 8.61%.

Table 1. GRU vs CTs at the end of TC-ViTs.

Metrics w GRU w CTs

Success Rate (%) ↑ 68.40± 1.34 27.85± 1.02
TTF (s) ↑ 7.46± 0.17 5.44± 0.34

3.2. How Hierarchical Loss Metric Set (HLM) Work
In this subsection, we further analyze the Hierarchical Loss
Metric (HLM) by addressing two key questions: (1) How
does the structural rationality of actions impact the safety
of the robot’s movements? (2) Is a vanilla VAE sufficient
to capture and reflect the rationality of the robot’s actions?
Through these investigations, we aim to provide deeper in-
sights into the design choices and contributions of HLM for
promoting self-coordinated and safe humanoid movements
across complex trails.
Ablation on w/wo HLM. We show the quantitative com-
parison between w/wo HLM in Tab 1 of the main paper with
metric MEV. Here, as a complementary, we show qualita-
tive samples. As shown in Fig 2, while LEGO-H without
HLM achieves successful traversal over the hurdle, the me-
chanical risks are significantly higher. The robot’s right
leg collides with the hurdle during the stepping motion,
and the minimal clearance further demonstrates unsafe and
inefficient movement patterns. In contrast, with HLM in-
corporated, the robot executes structurally rational and safe
movements. It first steps onto the hurdle with its left leg, en-
suring sufficient clearance for the right leg, and then transi-
tions to a stable hop onto the opposite leg. This coordinated
behavior highlights the role of HLM in enabling stability,
safety, and effective traversal strategies.
Vanilla VAE or full HLM? The latent space of a vanilla
VAE is commonly employed for prior regularization, pro-
moting outputs that align with the normal distribution of
the data. This proves effective for tasks like approximat-
ing averages in large-scale or in-the-wild datasets, as seen
in human pose reconstruction [10]. However, vanilla VAE
falls short when structural dependencies and inter-joint dy-
namics are critical, like humanoid robot actions. Specif-
ically, humanoid hiking with safety demands fine-grained
understanding of hierarchical relationships of robots’ own
physical mechanism, which vanilla VAE lacks. By contrast,
as demonstrated in Tab 2, full HLM introduces additional

LEGO-H

W TC-ViTs

Figure 2. Qualitative ablation on with/without HLM. Snapshots
from right to left depict two time steps of a robot traversing a
hurdle obstacle. The top row illustrates behaviors without HLM,
where unsafe movements lead to right leg collisions with the hur-
dle. The bottom row showcases behaviors with HLM, exhibiting
coordinated and structurally rational actions that ensure stability
and successful traversal with safe clearance.

masked reconstruction and hierarchical losses that implic-
itly enforce inter-joint structural rationality, enabling safer
and more efficient robot movement in complex tasks like
humanoid hiking.

Table 2. Ablation of HLM. for best goal completeness;
for most safeness; for best efficiency. The results highlight the
insufficiency of using a vanilla VAE as a prior. Additionally, com-
pared with Tab. 1 in the main paper, the vanilla VAE collapses
actions into average motions. While this slightly improves MEV
compared to the setting without any prior (w TC-ViTs), it sacri-
fices performance across all other metrics.

Metrics full HLM Vanilla VAE

Success Rate (%) ↑ 68.40± 1.34 53.49± 1.61
Trail Completion (%) ↑ 52.78± 1.30 43.00± 0.96

Traverse Rate (%) ↑ 71.96± 2.37 64.52± 1.02
MEV (%) ↓ 7.84± 0.92 9.26± 1.08
TTF (s) ↑ 7.46± 0.17 6.30± 0.15

Time-to-Reach (s) ↓ 4.95± 0.12 6.02±0.05

3.3. Emergent Behavior Analysis

In this subsection, we explore a critical question: How do
robots behave to ensure safety? We will list three exam-
ples, considering both high-level navigation behaviors and
low-level motor skill execution, to show how LEGO-H pri-
oritizes safety in dynamic and challenging environments.
Navigation in blocked paths. As discussed in the main pa-
per Section 4.3, robots typically opt to detour around large,
tall obstacles and skip over smaller ones. Here, we show
the phenomena from another aspect. In Fig 3, the traversed



Figure 3. Navigation in blocked paths over different obstacles.
The colored trajectory illustrates the robot’s torso position as it
traverses the trail. Zoomed-in regions highlight distinct navigation
behaviors: when encountering crowded, tall obstacles, the robot
opts to detour, whereas for smaller obstacles, the robot leaps over,
demonstrating adaptive navigation strategies.

Crab-like  Behaviour 

Front Jump

(a) long, rugged gully (b) short smooth gully

Figure 4. Behaviors over difference terrains. The robots ex-
hibit diverse integrative navigation and locomotion skills tailored
to varying trail terrains. (a) The robot adopts a lateral "crab" walk-
ing style to navigate a long, rugged gully, maintaining stability
while progressing toward the hiking terminus. (b) The robot faces
the final terminus directly and jumps over a short, smooth gully.
The orange directional lines show the terminus directions.

trajectory shows substantial clearance maintained from tall
obstacles (zoomed-in block: detour over obstacles) and ef-
ficient traversal above smaller ones (zoomed-in block: skip
obstacles). This demonstrates the robot’s ability to priori-
tize collision avoidance while exhibiting adaptive decision-
making based on the encountered environment.
Behavior over different terrains. In the main paper Sec-
tion 4.3, we discussed how diverse and distinct locomo-
tion skills emerge to tackle different terrains. Here, we
present two examples demonstrating how terrains influence
the robots’ integrative navigation decisions and motor ex-
ecution. As shown in Fig 4: (1) for a long, rugged gully,
the robot adopts a lateral "crab walk" strategy to maintain
balance and progress towards the terminus. (2) For a short,
smooth gully, the robot directly faces the terminus and leaps
over it, showcasing adaptive integrative navigation and mo-
tor behavior responses to varying trail challenges.
Re-balancing. The ability to re-balance is critical for hu-
manoid robots traversing complex trails. As shown in Fig 5,

the robot stumbles due to uneven terrain (red timeline), trig-
gering a sequence of emergent lateral motions that dynam-
ically counteract the imbalance (yellow timeline). After
that, the robot shows seamless coordination between re-
balancing and task continuity (green timeline). This ex-
ample highlights that, rather than relying on predefined re-
covery motions, the robot adapts its behavior dynamically
to the context. Such adaptability underscores the robust-
ness of LEGO-H’s unified learning framework in fostering
emergent, and context-aware integrative navigation and mo-
tor skills with safeness.

4. The Universality of LEGO-H
In this section, we explore the universality of LEGO-H
by demonstrating its flexibility in two ways: (1) integrat-
ing key components like HLM into other policy learning
pipelines, and (2) transferring the entire framework to a
morphologically distinct humanoid robot, Unitree G1, with-
out architecture changes.

4.1. HLM as a Plug-in Supervision
HLM focuses exclusively on maintaining structural simi-
larity between the oracle locomotion policy’s actions and
the student’s, making it agnostic to the student’s frame-
work design. This modularity allows HLM to be seamlessly
integrated as a plug-in supervision component into differ-
ent policy architectures, ensuring structural rationality and
coordination without requiring changes to the underlying
framework. We demonstrate this property by adding it to
EP-H. The results are shown in Tab 3.

Table 3. HLM as a plug-in supervision for other framework.

Metrics EP-H EP-H + HLM

Success Rate (SR) (%) ↑ 28.80± 0.88 35.53± 1.30
Trail Completion (TC) (%) ↑ 25.98± 0.22 30.36± 0.89

Traverse Rate (TR) (%) ↑ 64.16± 0.48 58.23± 0.76
MEV (%) ↓ 12.44± 1.32 10.98± 1.40
TTF (s) ↑ 4.64± 0.13 5.04± 0.16
T2R (s) ↓ 9.79± 0.16 7.80± 0.37

4.2. Transfer to G1 Robot
To further evaluate the universality of LEGO-H, we retrain
the framework on the Unitree G1 humanoid robot without
any architectural modification — demonstrating its agnosti-
cism to specific robot morphology. As shown in Tab 4, two
key observations emerge from this transfer: (1) Framework
generalization: LEGO-H can adapt to G1, despite differ-
ences in body structure and joint configuration from H1.
LEGO-H on G1 preserves reasonable integrative naviga-
tion and locomotion performance. (2) Performance shift.
Compared to H1, G1 exhibits lower performance in gen-
eral. This is primarily due to its shorter leg length and re-
duced camera height, which constrain both physical reach



Sudden Stumble Adjust Balance in A Dynamic Manner Re-balanced, Continue Hiking

Figure 5. Self re-balance. The robot stumbles unexpectedly (red timeline), swiftly adjusts its balance through a sequence of emergent
lateral motions (yellow timeline), and seamlessly regains stability (green timeline).

and perceptual field. Thus, on tasks requiring large clear-
ance—such as jumping over ditches, G1 typically struggles
more. A possible solution to mitigate these limitations is to
extend LEGO-H with effective whole-body control (WBC)
designs, allowing more expressive coordination across the
upper body and the lower body. This could compensate for
morphological constraints and unlock more agile, full-body
responses to complex hiking trails.

Table 4. LEGO-H on Humanoid G1 robot. We list H1’s result as
a reference. The results highlight the universality of our proposed
learning framework for different robot types.

Metrics H1 G1

Success Rate (%) ↑ 68.40± 1.34 63.96± 1.03
Trail Completion (%) ↑ 52.78± 1.30 38.94± 0.63

Traverse Rate (%) ↑ 71.96± 2.37 62.21± 0.97
MEV (%) ↓ 7.84± 0.92 5.33± 0.68
TTF (s) ↑ 7.46± 0.17 7.24± 0.22

Time-to-Reach (s) ↓ 4.95± 0.12 8.10±0.08

5. Simulated Hiking Trail Constructions
To establish a robust testbed for humanoid hiking tasks, we
design diverse trails in the Nvidia Isaac Gym Simulator [8]
using a procedural generation approach. The construction
process is detailed in Section 5.1, while Section 5.2 outlines
the goal and waypoint design methodology.

5.1. Trail Scene Generation
To simulate diverse trail environments for humanoid hik-
ing, we design 16 basic terrain primitives. Each primitive is
extended into multiple variants by randomly sampling ter-
rain properties such as slope, height, and surface friction, as
well as their positions, using a procedural terrain generation
mechanism. These primitives form the foundation for con-
structing five distinct trail types, each presenting a unique
combination of terrain challenges and navigation complex-
ity. Specifically:
• RandomMix trail category features unobstructed views,

testing the robot’s ability to navigate long distances while
adapting multiple motor skills to various mixed terrain

types.
• Ditch category introduces uneven, middle-distance trails

with diverse slopes and gaps, challenging the robots to
decide and execute quick turns and agile leaps.

• Hurdle category includes trails with long, cubic obstacles,
focusing on testing the robot’s ability to avoid foot colli-
sions while navigating middle distances.

• Gap trails with uneven jumping platforms, including
varying gap distances and straight or staggered stones,
evaluating the robot’s balance and jumping ability during
middle-distance navigation.

• Forest trails densely populated with variously sized and
positioned obstacles, simulating obstructed views and
tight navigation spaces. These test the robot’s ability to
detour, effectively traverse crowded paths, and maintain
balance under constrained conditions.
Each trail category covers five hiking difficulty levels,

with additional variants generated through the randomiza-
tion of terrain properties and obstacle placement. These
diversities ensure a comprehensive testbed across a wide
spectrum of challenges. To expand the evaluation scope,
we also construct out-of-domain hiking trails by combining
multiple trail types into complex, long-distance hill scenar-
ios. These trails test the robots’ adaptability, and integrative
capabilities under extended and unpredictable hiking con-
ditions. We show the zero-shot ability of LEGO-H on the
out-of-domain trails in the supplemental video.

5.2. Oracle Navigation Goal Design
The design of expert navigation goals for the oracle stage
follows these criteria:

• Unobstructed-view trails: For trails with clear visibility,
such as RandomMix, expert navigation goals are set as
evenly spaced waypoints within the traversable regions,
aligning directly with the trail direction. These goals en-
sure smooth long-distance navigation.

• Obstructed-view trails: For complex trails like Forest,
navigation goals are dynamically set to detour around ob-
stacles, following feasible paths with a degree of random-
ness to promote diverse path exploration. These goals
maintain sufficient clearance to prevent collisions and en-



courage obstacle-aware navigation strategies.
• Terrain-specific trails: For specialized challenges like

Hurdle, Ditch, and Gap, navigation goals are positioned
to encourage the emergence of specific motor behaviors,
such as agile leaps, balanced stepping, or jumping within
safe zones. These goals are carefully tailored to meet the
unique demands of each terrain type, ensuring both adapt-
ability and safety.

These navigation goals establish a robust foundation for or-
acle policy training.

6. Experimental Details

All experiments are conducted on a single A40 GPU,
though the policy can also be deployed on a more cost-
effective GPU, such as the 4080. The oracle policy training
requires approximately ∼ 18 GPU hours, while the unified
policy training takes ∼ 2 GPU days. For camera placement,
if the humanoid robots are equipped with a head-mounted
camera, we use the default configuration. Otherwise, an
additional camera is attached approximately at eye level.
This section provides additional implementation details of
LEGO-H: Section 6.1 details the architecture specifications,
and Section 6.2 elaborates on the training procedures and
hyperparameter configurations.

6.1. Network Architectures
This section details the network architectures of: the scan-
dot encoder, the oracle policy, and the masked Variational
Autoencoder (VAE) used in the Hierarchical Loss Metric
(HLM).
Scandot Encoder. It is three layers of MLPs, with the hid-
den layer dimension of [128, 64, 32]. The activation func-
tions are eLU for hidden layers and Tanh for the output
layer.
Oracle Policy. The Actor network takes proprioceptive
data, encoded scan features from the Scandot Encoder, priv-
ileged information, and encoded privileged features as in-
puts, and flows them into three layers of MLPs, where the
dimension is [512, 256, 128]. The activation functions are
eLU for hidden layers and Tanh for the output layer.The
Critic network shares the same architecture as the Actor net-
work. The encoder dimension for privileged information is
[64, 20].
Masked VAE for HLM. The architecture of the Variational
Autoencoder (VAE) employed for the Hierarchical Loss
Metric (HLM) consists of fully connected residual layers.
The encoder includes multiple ResidualFC layers followed
by two linear layers to produce the mean and log variance
of the latent variable. ReLU activations are used in both
the encoder and decoder, with the decoder’s output layer
utilizing a sigmoid activation function to ensure bounded
outputs.

6.2. Training Procedure
The training process begins with the development of ora-
cle policy using privileged information and expert naviga-
tion goals. Subsequently, the unified policy, incorporating
TC-ViTs and the locomotion module, is trained with visual
information as inputs. This stage excludes privileged infor-
mation and distills motor knowledge from the oracle policy
into the unified framework.

6.2.1. Oracle Policy Training
The goal of this stage is to develop an oracle locomotion
policy that facilitates the training of the unified policy in
the subsequent stage. Since the environment properties will
be unknown in the second stage, we adopt the strategy
from [3, 16] to train an adaptation module capable of es-
timating environment properties. The detailed training pro-
cedure is outlined below.
Curriculum Learning. To ensure stable training, we lever-
age curriculum learning [3, 6, 7], progressively increasing
the complexity of traversable terrains based on the robots’
acquired skills. This method enables gradual adaptation and
robust policy development for challenging trails. Specif-
ically, the robot’s distance from the origin is tracked and
compared against a threshold determined by its commanded
velocity and the episode length. Terrain levels are adjusted
as follows: (1) if the robot’s distance exceeds 80% of the
threshold, the terrain level advances to a more challeng-
ing stage; (2) if the robot’s distance falls below 40% of the
threshold, the terrain level reverts to an easier stage; and (3)
upon completing all levels, the robot is randomly reassigned
to a level to maintain diversity in training.
Domain Randomization. To increase the sim-to-real trans-
fer ability, we follow the common strategy in robotics to use
the [14]. The detailed parameters are listed in Tab 5.

Table 5. Domain randomization parameters.

Term Value
Friction U(0.6, 2.0)

Base Mass offset U(0.0, 3.0)
Base CoM offset U(−0.2, 0.2)

Push robot–interval 8s
Push robot–max push vel_xy 0.5m/s

Motor strength range U(0.8, 1.2)
Delay update global steps 24× 8000

Rewards. Please refer to Tab 6 for the detailed formula
definitions and corresponding weights.
Termination Conditions. To maintain meaningful train-
ing and testing environments, we define termination condi-
tions to prevent invalid episodes. An episode ends if any
of the following occur: (1) Soft pose check: the robot’s ab-
solute roll or pitch exceeds a predefined threshold, or its
height falls below a defined lower bound; (2) Goal reach



Table 6. Rewards’ definition and weight.The symbol ∗ means the term only used in unified policy training stage.

Term Mathematical Expression Weight
Tracking Goal Velocity min(vtarget·vt,cmdx)

cmdx+ϵ 10.0
Tracking Yaw exp (− |ψtarget − ψt|) 0.5

Linear Velocity (Z) v2z -2.0
Angular Velocity (XY)

∑(
ω2
x + ω2

y

)
-1.0

Orientation
∑(

g2x + g2y
)

-1.0

DOF Acceleration
∑(

q̇t−1−q̇t
∆t

)2

-3.5e-8
Collision

∑
(∥Fcontact∥ > 0.1) -10.0

Action Rate ∥at−1 − at∥ -0.01
Delta Torques

∑
(τt − τt−1)

2 -1.0e-7
Torques

∑
τ2t -1.0e-5

Hip Position
∑

(qhip − qhip-default)
2 -0.5

DOF Error rdof_error =
∑

(qdof − qdefault)
2 -0.04

Feet Stumble
∨

(∥Fcontact∥>4·|Fcontact|) -1
Feet Edge (terrain_level > 3) ·

∑
(feet_at_edge) -1

Feet Air Time
∑

(Tair − 0.5) · (first_contact) 1.0(H1)/0.5(G1)
Base Height (hbase − htarget)

2 -100.0 (H1)/-35.0 (G1)

Point Navigation Distance∗ rpn_distance =

{
1 ∥prel∥ < θreach

−∥prel∥ · 0.75 otherwise
1.0

DOF Position Limits
∑

(−max (0, dof − dof_limlow) + max (0, dof − dof_limup)) 0.0 (H1)/-5.0 (G1)
Tracking Sigma exp(−track2err/σ) 0.5

Table 7. Loss weight hyperparameters.

Parameter w1 w2 w3 w4 w5 w6 w7 w8 cmt cms

Value 1.0 1.0 1.0 1.0 1.0 1.0 100.0 2.0 0.85 0.15

check: the robot is within a specific distance from the final
goal. We adopt the goal navigation criteria from [1], setting
the goal distance to roughly twice the robot’s body width.
Specifically, the goal distance is set to 0.89 during testing
and 0.5 during training to encourage precise task execution.
(3) Timeout: The robot exceeds maximum episode length.

6.2.2. Unified Policy Training
To train the unified policy, we use the rewards listed in
Tab 6, and losses introduced in the main paper, where the
hyperparameters are listed in Tab 7.

7. Humanoid Hiking Benchmark

This section provides: (1) Qualitative comparisons of robot
behaviors in response to varying trail challenges, demon-
strating how different policy learning methodologies influ-
ence navigation and locomotion strategies tailored to hu-
manoid tasks; (2) Detailed quantitative results for each trail
type between EP-H and RMA-B, offering insights into spe-
cific strengths and weaknesses of the approaches under dis-
tinct terrain and navigation conditions.

Visualization. Fig 6 presents qualitative comparisons
of LEGO-H with other benchmarked methods across five
distinct trail examples, expanding on the key findings
from Section 4.4 of the main paper. Additional insights
include:(1) without vision, RMA-B frequently fails to adapt
to changing terrain properties (e.g., slope and surface fric-
tion) and falls over more often, as observed in Fig 6(a)-(b).
It also struggles to navigate obstacles effectively, often be-
coming stuck, as shown in Fig 6(c). The higher MEV on
Ditch and Hurdle, and lower trail completion on Forest in
Tab 8 also demonstrate this. (2) EP-H, which processes
depth frames independently and applies brute-force cutoff
for distant depth information, exhibits "circling" behaviors
due to its inability to maintain scene continuity. This lim-
itation hinders quick decision-making and recovery from
self-induced distribution shifts, as demonstrated in Fig 6(b),
and results in inefficient navigation paths, as illustrated in
Fig 6(c). (3) While leveraging vision, RMA-H lacks dy-
namic adaptability in navigation due to its separation of lo-
comotion and navigation learning. This results in inefficient
behaviors on trails requiring sharp turns or obstacle avoid-
ance, as seen in Fig 6(a)-(b). Additionally, its inefficient
embodiment leads to unsafe detours, with trajectories that
closely rub against obstacles, as highlighted in the zoomed-
in trajectory in Fig 6(c). (4) The clean and safe-clearance
trajectories of LEGO-H across all examples highlight the
necessity and importance of integrative navigation and lo-
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Figure 6. Qualitative comparisons between LEGO-H and other benchmarked methods. The trajectories, visualized through dynami-
cally updated colored lines, depict the robots’ torso position as they traverse diverse trail environments. (a) illustrates the performance on
a RandomMix trail featuring unobstructed views with varied terrain types. (b) highlights the results on a Ditch trail, where uneven terrain
with slopes and gaps demands quick turns and agile leaps. (c) showcases the performance on a Forest trail, where extensive obstacles of
different sizes and heights block the robot’s view. The zoom-in regions highlight the issues of the robots.

Table 8. EP-H vs RMA-B on each trail category. This table employs a distinct protocol for fine-grained analysis: 256 randomly initialized
robots are evaluated for 30 seconds per trail category, spanning 25 scenes (5 difficulty levels, each with 5 variants). Results are averaged
over 5 runs to minimize random biases and ensure robustness.

Methods Success Rate (%) ↑ Trail Completion (%) ↑ Traverse Rate (%) ↑ MEV (%) ↓ TTF (s) ↑ Time-to-Reach (s) ↓

RandomMix
EP-H 16.98± 0.85 2.67± 0.14 70.88± 1.41 11.32± 1.83 3.33± 0.13 9.73± 0.19

RMA-B 30.99± 0.95 3.60± 0.37 76.74± 1.13 10.95± 1.70 4.14± 0.20 6.79± 0.09

Ditch
EP-H 16.12± 0.66 17.90± 0.62 55.75± 0.58 22.75±1.63 3.50± 0.08 11.88± 0.33

RMA-B 32.80± 1.56 30.77± 0.59 63.49± 1.42 23.66± 1.63 4.56± 0.18 6.37± 0.37

Hurdle
EP-H 46.54± 2.64 57.04± 1.25 68.95± 1.79 8.77± 0.46 6.44± 0.21 5.94± 0.14

RMA-B 83.04± 0.27 76.72± 0.47 83.04±1.17 12.90± 1.92 9.24± 0.28 4.22± 0.04

Gap
EP-H 18.13± 1.19 32.26± 0.48 58.74± 1.21 31.84± 2.00 4.36± 0.20 12.15± 0.34

RMA-B 39.93± 1.55 44.27± 1.06 65.30± 1.32 24.10±2.09 5.44± 0.24 7.99± 0.17

Forest
EP-H 63.29± 1.50 1.04± 0.16 82.61± 1.18 6.18± 1.57 8.96± 0.49 13.65± 0.08

RMA-B 64.81± 2.43 1.86± 0.38 81.59± 3.20 5.69± 1.04 10.18± 0.89 13.20± 0.24

comotion development through unified learning.
Insufficient Vision vs Blind. Tab 8 show the comparison
between EP-H and RMA-B. It indicates insufficient vision
sometimes worse than blind vision.

8. Discussion
Future work. (1) Kilometer-scale hiking. In this paper,
we investigate humanoid robots on prototype trails to es-
tablish a baseline on the importance of integrative high-
level navigation and low-level motor skills. However, real-
world trails are considerably more complex, with long-
distance traverse challenges. Future work could expand the

framework to handle kilometer-scale trails, where sustained
adaptability, energy efficiency, and long-term planning be-
come crucial. (2) Whole-body control for integrative nav-
igation and locomotion skills. Expanding control across
the entire body would enable a wider spectrum and adap-
tive behaviors, enhancing the robot’s flexibility in complex,
obstacle-rich environments. Our preliminary results sug-
gest that while robots exhibit distinct motor styles based on
physical constraints(Fig. 7), direct involvement of the upper
body does not significantly impact performance. This opens
opportunities for future work on exploring how coordinated
whole-body strategies can enhance performance. (3) Sim-
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Figure 7. Preliminary observations for future work on WBC.
G1 exhibits distinct motor behaviors over with arms vs only lower
body. Besides, G1 emerges a rear-arm tuck posture while walking,
likely to minimize arm interference with vision (see depth map).

ulated environment upgrading. Our current simulated trails
are primarily for foot contact; Future work could upgrade
the simulated environment to better incorporate whole-body
interactions, enabling a better testbed for future hiking stud-
ies. (4) Real-world deployment. In this paper, we conduct
experiments on the simulator, enabling controlled bench-
marking, rapid iteration, and reproducibility — key pre-
requisites for real-world deployment. However, applying
LEGO-H to real-world scenarios remains a vital next step
toward closing the sim-to-real gap and realizing field-ready
humanoid hikers.
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